The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli.

نویسندگان

  • C Rubin
  • G Xu
  • S Judex
چکیده

It is generally believed that mechanical signals must be large in order to be anabolic to bone tissue. Recent evidence indicates, however, that extremely low-magnitude (<10 microstrain) mechanical signals readily stimulate bone formation if induced at a high frequency. We examined the ability of extremely low-magnitude, high-frequency mechanical signals to restore anabolic bone cell activity inhibited by disuse. Adult female rats were randomly assigned to six groups: baseline control, age-matched control, mechanically stimulated for 10 min/day, disuse (hind limb suspension), disuse interrupted by 10 min/day of weight bearing, and disuse interrupted by 10 min/day of mechanical stimulation. After a 28 day protocol, bone formation rates (BFR) in the proximal tibia of mechanically stimulated rats increased compared with age-matched control (+97%). Disuse alone reduced BFR (-92%), a suppression only slightly curbed when disuse was interrupted by 10 min of weight bearing (-61%). In contrast, disuse interrupted by 10 min per day of low-level mechanical intervention normalized BFR to values seen in age-matched controls. This work indicates that this noninvasive, extremely low-level stimulus may provide an effective biomechanical intervention for the bone loss that plagues long-term space flight, bed rest, or immobilization caused by paralysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of osteopenia by low magnitude, high-frequency mechanical stimuli.

The identification of anabolic agents for the treatment of metabolic bone disease is a highly prized, and elusive, goal. In searching for the osteogenic (bone-producing) constituents within mechanical stimuli, it was determined that high frequency (10-100 Hz) and low magnitude (<10 microstrain) stimuli were capable of augmenting bone mass and morphology, thereby benefiting both bone quantity an...

متن کامل

Genetic predisposition to low bone mass is paralleled by an enhanced sensitivity to signals anabolic to the skeleton.

The structure of the adult skeleton is determined, in large part, by its genome. Whether genetic variations may influence the effectiveness of interventions to combat skeletal diseases remains unknown. The differential response of trabecular bone to an anabolic (low-level mechanical vibration) and a catabolic (disuse) mechanical stimulus were evaluated in three strains of adult mice. In low bon...

متن کامل

The Role of Mechanical Stimulation in Recovery of Bone Loss—High versus Low Magnitude and Frequency of Force

Musculoskeletal pathologies associated with decreased bone mass, including osteoporosis and disuse-induced bone loss, affect millions of Americans annually. Microgravity-induced bone loss presents a similar concern for astronauts during space missions. Many pharmaceutical treatments have slowed osteoporosis, and recent data shows promise for countermeasures for bone loss observed in astronauts....

متن کامل

Low magnitude and high frequency mechanical loading prevents decreased bone formation responses of 2T3 preosteoblasts.

Bone loss due to osteoporosis or disuse such as in paraplegia or microgravity is a significant health problem. As a treatment for osteoporosis, brief exposure of intact animals or humans to low magnitude and high frequency (LMHF) mechanical loading has been shown to normalize and prevent bone loss. However, the underlying molecular changes and the target cells by which LMHF mechanical loading a...

متن کامل

Building bone mass through exercise: could less be more?

A vast literature supports the sensitivity of bone to mechanical loading. When mechanical loading is acutely diminished, as occurs with paralysis or other forms of disuse, bone mass is rapidly degraded. Alternatively, bone is also capable of substantial augmentation following long term exercise. In combination, these observations suggest that mechanical loading of the skeleton is essential for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 15 12  شماره 

صفحات  -

تاریخ انتشار 2001